Как влияет машинное обучение на бизнес-процессы

19 марта 2018, 09:00

Технология роботизации бизнес-процессов (Robotic Process Automation, RPA) имеет огромный потенциал для повышения операционной производительности и снижения операционных расходов.

Все рутинные и повторяющиеся изо дня в день процессы, которых существует множество в каждой организации, благодаря ей могут быть существенно усовершенствованы.

Однако, будем откровенны, при всех преимуществах роботизации технология всё-таки имеет свои ограничения. Они появляются, когда процессы происходят по нетривиальным сценариям и требуют принятия решений или анализа. На данном этапе развития технологии программный робот способен воспринимать только шаблонные структурированные данные и осуществлять операции, основанные на чётко определённых параметрах. Распознавать неструктурированные или полуструктурированные массивы данных и делать на их основе аналитические выводы является только прерогативой человека. Однако будет ли эта ситуация оставаться и в дальнейшем неизменной?

Видео дня

Никто из нас не рождается с априори сложившимся мировоззрением и опытом. Человек становится тем, кем себя создаёт в процессе обучения и развития. Похожая идея ‒ способности машин самостоятельно "обучаться" ‒ заложена и в технологию машинного обучения (Machine Learning, ML). Как оказывается, машины также могут учиться на основе собственного опыта, в процессе анализа и обработки больших массивов данных находить в них закономерности и прогнозировать результаты.

Сама идея машинного обучения не нова и уже широко апробирована такими технологическими гигантами, как IBM (Watson, 2011), Google (AlphaGo, 2015). Но только сейчас ‒ с развитием современных технологий и усовершенствованием уже разработанных прототипов ‒ появляются предпосылки для её полноценной технической реализации. Мы даже не подозреваем, что машинное обучение уже стало органической частью нашей повседневной жизни. На основе наших предыдущих предпочтений специально настроенные алгоритмы подбирают нам ленту новостей в соцсетях и товары в интернет-магазинах, осуществляют фильтрацию почтовых сообщений от спама; всё совершеннее становится машинный перевод (например, Google Translate) благодаря доступной ручной функции "улучшить перевод" и т. п. По мнению специалистов, направление машинного обучения станет одним из определяющих в развитии компьютерных технологий в XXI веке.

Поэтому с появлением и активным внедрением машинного обучения осуществление программными роботами исключительно рутинных задач становится далеко не верхней границей их потенциальных возможностей. Применение технологий машинного обучения в роботизации бизнес-процессов позволит значительно расширить её функциональность. Благодаря когнитивным технологиям программные роботы будут становиться всё умнее, в состоянии выполнять ещё более сложные задачи, чем на это способны сегодня, развивать и совершенствовать свои навыки, которые не были в них заложены с самого начала. Поэтому сочетание возможностей этих технологий позволит достичь ещё большей операционной эффективности.

Так где же именно может применяться технология машинного обучения в сфере роботизации бизнес-процессов? Здесь без лишних сомнений можно сказать, что развиваться она будет прежде всего в области совершенствования распознаваемых объектов и данных. Поскольку программный робот может сейчас качественно и без ошибок считывать только структурированный печатный текст, следующим шагом для него должно стать качественное распознавание нестандартных шрифтов, неструктурированных данных, рукописного текста, человеческих лиц и естественного языка. Вместе с расширением распознавательных возможностей параллельно будет совершенствоваться и потенциал роботизации по эффективной обработке бизнес-процессов. А это всё в конечном итоге позволит ещё более их оптимизировать и сократить операционные расходы на их содержание.

Однако всё-таки не следует забывать и об определённых рисках интеграции машинного обучения и роботизации бизнес-процессов. Если, например, робот будет корректно запрограммирован на выполнение нужных действий при помощи апробированных методов RPA, можно быть абсолютно уверенным в точности выполнения роботизированного процесса. Однако если вы всё же рассчитываете на более широкие возможности программного робота, но объём предоставленных ему для анализа и "принятия решения" данных будет неполным, некорректным или недостаточно продуманным, то здесь нельзя полностью исключить возможность возникновения ошибок. Более того, при таких условиях они будут вполне закономерны. Впрочем, если в вашей команде разработчиков есть люди с соответствующими профессиональными навыками, способные тщательно продумать и корректно применять учебные алгоритмы программирования, то таких рисков, бесспорно, можно избежать.

Поэтому выбор, несомненно, будет оставаться за вами: классическая роботизация бизнес-процессов или классическая роботизация, умноженная на возможности когнитивных технологий машинного обучения. Оба варианта способны открыть несравненно лучшие возможности для оптимизации бизнеса. Однако уже и сегодня совершенно очевидно, что будущее всё-таки будет за последней.

Присоединяйтесь к нам в соцсетях Facebook, Telegram и Instagram.

Показать ещё новости
Радіо НВ
X